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Implicit high-order accurate temporal-integration schemes are developed to reduce partial 
differential equations of evolution type to a sequence of ordinary differential equations 
involving the spatial directions only. The ordinary differential equations are solved using 
various accurate integration methods. The schemes are free from extraneous boundary and/or 
initial conditions and arc stable for large Courant number. 

1. INTRODUCTION 

Implicit-difference methods which possess large stability regions are useful for stiff 
problems [l-3]. One widely used implicit method is the trapezoidal rule. In the 
numerical solution of partial differential equations (PDEs) the trapezoidal rule has 
been used together with accurate and complex spatial approximations 12, 4-61. Since 
large time steps are taken and since more accurate spatial approximations are used 
we must be more cautious with the temporal accuracy. The trapezoidal rule is 
second-order accurate and the development of higher order accurate schemes is 
desirable. This is in contrast with the use of conditionally stable explicit methods, in 
which temporal discretization errors are generally negligible comparing with spatial 
discretization errors. 

Some high-order time-differencing schemes require extraneous initial conditions 
and the extraneous computational solutions thus produced can be a nuisance. A well- 
known example is the Leapfrog scheme with its associated split instability [7 1. We 
therefore develop one-step implicit high-order schemes of Runge-Kutta type. 

Implicit methods for PDEs generally require solving a system of nonlinear 
equations. Linearization methods have been devised for the trapezoidal rule to 
overcome the difficulty [l-3]. In this paper, we shall keep the nonlinearity and 
directly solve the resulting differential system involving spatial operators only. In 
one-space dimensional PDEs, this amounts to solving a set of ordinary differential 
equations (ODES). In multi-space dimensional PDEs we extend the alternating 
direction implicit (ADI) method of Peaceman and Rachford [8] and the system of 
(spatial) PDEs is reduced to a set of ODES. We solve these ODES using a variety of 
accurate methods. These ideas are inherent in the methods of lines (MOL) (see e.g., 
[9]). Instead of discretizing in space and using ODE integration technique in the 
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temporal direction, as is usually done in MOL, we discretize in time and use ODE 
integration techniques in the spatial direction(s). 

Our presentation is divided into five sections. After briefly introducing some 
definitions and notations in Section 2 we develop and test a number of implicit time- 
difference schemes in Section 3. In Section 4 we apply these schemes to one-space 
dimensional hyperbolic PDEs and extend the basic algorithm to two-space dimen- 
sional PDEs. In Section 5, we discuss various difficulties we encountered and raise 
questions that need further studies. The paper ends with a concluding summary in 
Section 6. 

2. DEFINITIONS AND NOTATIONS 

Consider the scalar ODE 

du/dt = f (u, t), t > to 

where u(t) is the unknown function, t is the time, to is the initial time, andf(u, t) is a 
Lipschitz continuous function of u and t. We use capital U for the discrete solution 
and lowercase u for the continuum solution. We shall often use the linearized form of 
(1) with f = lu, where A is a complex constant with negative-real part. A-Stability 
then requires 1 U”+‘/U”l < 1 for all h with Re(h) < 0, where h =I At, At is the step 
size and the superscript n denotes the value of U at the grid point to + n At. For real A 
we define that a method is A(0, &)-stable if 1 U”+‘/U” < 1, -k < h < 0. 

We say that a method is of order m if p = Unt ‘/IT’ is such that 

I(v+‘/u”) - (u”+‘/u”)I = 0(/P+‘) 

as h + 0, where u is the solution to (1) with f = AU. 
We shall consider PDEs of the form 

where the subscript on u denotes partial derivatives and where L is a spatial operator. 
Difference approximations on ut will be called temporal integrator. Any method used 
to approximate L(u) will be called a spatial integrator. 

3. DIFFERENCE SCHEMES FOR ODES 

Our aim is to construct integrators which are (1) more accurate than the 
trapezoidal rule, (2) in one-step forms, (3) implicit, and (4) either A-stable or else 
possess large stability regions. We shall use the error analysis of Kreiss and Oliger 
1101 and obtain the error estimate for each method. We shall then test each method 
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on a number of ODES taken from Lapidus and Seinfeld [ 111, Lambert [ 121, and Bui 
[ 131. We shall choose those methods which give best overall performance. These 
methods will then be used in Section 4 to Solve PDEs. 

3.1 Temporal Integrators 

Method 1. (The Trapezoidal Rule). A-Stable trapezoidal rule applied to (1) is 

U”+’ = U” + (At/2)(F” t F,+‘) 

v = U(4)>, 
(2) 

where F” means f(iJ”, to t n At). 
Consider F” = AU”. We put A = 2ni (i = (-l)“‘), At = l/N, (i.e., IV, grid lengths 

per period), and ask what the minimum N, should be so that the error is less than 
p % after j periods [lo]. The difference solution is U” = u,,,u~ and the exact solution is 
u = u,, exp(i 2nt). Thus, for t =j, the (absolute) error is required to be less than p% 
as in 

]exp(2nij + (2ni)3j/(12Nf) t ..a) - exp(2nij)) < p/100 

or, 
N, > (8OO$j/12p)“*. (34 

For p = 1 we obtain 

N,,j=l X45 (3b) 
and 

N,,j=s 2 100. (3c) 

Higher-Order Methods. We develop third- and fourth-order methods by 
combining the Runge-Kutta and linear multistep methods. We obtain the 
corresponding p’s with free parameters and choose these parameters for accuracy and 
stability. 

Consider the following Z linear-multistep methods, each of step number I (Lambert 
[ 12, p. 111) applied over one time interval At, 

\’ a .,Un+jli = At <7 bi,iFn+jl’ 
L rJ 

j=O j=O 

i = 1, 2 ,..., I. (4) 

Given u” and the parameters aij and b, this is a system of equations for Un’jl’, j = 
1,2 ,..., I. To simplify (4) we set 

aij = b, = 0, i<j, 

a 1.j = 1 , i= j, 
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and obtain 
i-l i 

i = 1, 2 ,..., I. (5) 

Equation (5) can now be solved for U”+’ in a stepwise manner starting with i = 1, 
much like in Runge-Kutta methods. In fact, we can write 

u ‘+ ’ = G(uij) U” + At #(t, U; At, aij, b,), l<i<I, O<j<I, 

4 = (go p,F(t + i At/I, U”+“‘) 
(6) 

which with (5) is in the usual Runge-Kutta format. 
For F = 0, $ = 0 and we have G(Q) = 1. Equation (6) with (5) then is similar to 

Butcher’s semi-implicit Runge-Kutta method (see Lambert [ 12, pp. 149-1551). It is 
less general than the Runge-Kutta method in that the intermediate steps are in simple 
fractions i/Z, i = 0, l,..., I; more general in that the first summation term on the rhs of 
(5) is not equal to U”. 

The implicit methods (4) belong to a class of “block methods” ([ 14-16; 12, 
pp. 156-1611). In these methods, U”+’ is built up from U” using (Z - 1) intermediate 
linear-multistep formulae. The method, therefore, advances in block of I steps. In the 
above, we have simply taken the block from t to t + At. 

We now set Z = 4 in (5) and choose the parameters aij and b, for stability and 
accuracy. To reduce the number of free parameters we arbitrarily set the i = 1 step to 
be the trapezoidal rule, the i = 2 step to be third order and the i = 3 and i = 4 steps 
both to be fourth order. Later we shall derive schemes without these restrictions. 
Certain expressions relating the parameters must then be satisfied and the number of 
free parameters is reduced to 7: uzo, ajo, bxO, a,,, a,, , b,, , and b,, . In addition, we 
also define two other schemes by setting I= 2 and I = 3. We denote these three 
methods by Method i and their corresponding p’s by pi, i = 2, 3, and 4. We calculate 
the seven parameters by matching pi with exp(h) to h” terms to give an mth order 
scheme. Table I summarizes some of the schemes we obtained. The third- and fourth- 
order Methods 3.1, 4.1, and 4.2 are not A-stable. Their stability diagrams are given in 
Fig. 1. 

We repeat the error analysis of Kreiss and Oliger for each method and obtain’ 

Method 2.1 

Method 3.1 

N, > (800~3j/48p)~‘* = N,/2; (7) 

N,, > (16OO#j/288p)“‘, @a) 

(8b) 

’ Method 2.2 has a small stability region and will not be considered further. 
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I I I I I 
-10 -6 -2 O0 

Real h 

FIG. 1. Stability diagram for Methods 3.1, 4.1, and 4.2. The regions into which the arrows point are 
the stable regions. Method 3.1 is unstable for purely imaginary h while the neutral curves for 
Methods 4.1 and 4.2 intersect the imaginary axis at Im(h) =: 0.4. 

Method 4 

N, 2 (32OO?j/ 1000p)“4, Pa> 

Nct,j=l,p=l 26, Pb) 

Nct,j=s,p= 1 X 8. (SC> 

Thus, Method 2.1 effectively gives no improvement over Method 1 because it 

requires twice the computational work per time step. Comparing (8b), (8c), (9b), and 
(SC) with (3b) and (3~) we see that Methods 3.1 and 4 give significant improvement 
over Method 1, especially as j increases (long-time integration) and/or p decreases 
(small error requirement). 

Because of the restrictions that we imposed on the intermediate steps in (5) we 
could not obtain A-stable third- and fourth-order formulae. We now remove these 
restrictions and construct a third-order method which is A-stable. One set of 
parameters, chosen from the infinitely many sets of them which give A-stability is 

Method 3.2 Equation (5) with I = 3 and 

a,, = q. = ujo = -1, 

a,, = ajl-= a)* = b,, = b,, = 0, 

b,o=~z-, b,, =a, b,, =bzz=f, 

b,, = 1, b,, = -4, b,, = f. 
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The leading truncation error is 4h4/288, which is four times that of Method 3.1. 
Thus, the corresponding Nj2 in the error estimate of Kreiss and Oliger is, from (8) 

N 
32 

= 4’13N 3, z 1.6N,,. 

Thus, Method 3.2 is competitive with Method 1 only when j is large and/or p is 
small. We could also construct fourth-order schemes and thus improve the efficiency 
of the method, but at present we shall not pursue this. 

3.2 Numerical Experiments 

We solve ODES using Methods 1, 3.1, 3.2, 4.1, and 4.2. The test examples, given 
in Table II, range from linear nonstiff problems to nonlinear highly stiff problems. 
We compare our results with the results of calculations taken from Lapidus and 
Seinfeld [ 111, Lambert [ 121, and Bui [ 13 ] using other methods. Typical comparisons 
are given in Tables III-VII. In these Tables, E = 1 computed solution - exact solution ( 
and D = /(computed - exact)/exact 1. In general, for nonstiff problems, Methods 3 and 
4 are more accurate than the commonly used methods of the same order (Tables III 
and IV). For stiff problems our methods did fairly well (Tables V and VI). This is 
fortuitous, however, since the accuracies of Methods 3 and 4 are guaranteed only for 
small h. Nevertheless, Table VII shows that for certain sets of parameters Method 4 
gives very good accuracy for Bui’s nonlinear highly stiff example. 

3.3 Summary for Section 3 

We derived and tested temporal integrators which (1) have large stability regions, 
(2) are accurate, and (3) are in one-step forms. Moreover, these methods are implicit 
and are solved in sequences. The methods that give good accuracies are Methods 3.1, 
4.1, and 4.2. We shall use these methods for solving PDEs in the next section. 

4. SCHEMES FOR PDEs 

4.1 One-Space Dimensional PDEs 

Consider 

u, = -L,(u), x > 0, (11) 
u(x, t = 0) = uO(x), (114 
24(x = 0, t) = u,(t), (1 lb) 

where L, is a one-dimensional space-differential operator. As an example of our 
method of solution we now illustrate how we can use Method 3.1 to solve (11). 
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Un+“3 = U” + (At/3)(F” + F”+“3)/2, 

Unf213 = U” + (2At/3)(F” + 2F”+ ‘I3 + F”+2’3)/4, 

u n+’ = ,‘J” +A@.” + 3(F”+“3 + F”+2’3) + F”+‘)/8. 

This can be rewritten as 

where 

cm = 6/At for m=n+1/3, n+2/3 

= 8/At for m=n+ 1, 

(12) 

(13) 

and 

R” = c”‘U” -l-F”, m = n + l/3 

= c”‘lJ* + F” + 2F”+‘/‘, m = n -I 213 

(144 

(14b) 
=Cm~n +F” + 3(F”+‘/” +~“+2/3), m=n+l. (14c) 

Substituting F = -L,(U) in (12), we obtain 

L,( Urn) = -emUrn + R ‘?‘, m = n + l/3, n + 2/3 and n + 1 (15) 

a sequence of ODES. 
Implicit temporal integrators which can be solved in equence, like Methods 3 and 

4, can be reduced to a set of ODES when applied to one-space dimensional PDEs. 
Moreover, if v”(x) is exact and if each sequence of ODE in (15) is solved exactly, we 
have a numerical PDE solver containing temporal discretization error only. Thus, 
with v”(x) = u”(x) given from (1 la), L,(U”) is calculated and from (14a), we get 
R 1’3(x) = (6/At) U”(x) -L,(v). S’ mce U,(At/3) is given from (1 lb), (15) can be 
integrated for I!.?‘~(x). Equations (15) then gives L,(U’13) = -c’~~U”” + RI’-’ and 
(14b) gives R 2’3(x). With U,(2At/3) again given by (11 b), ( 15) can now be solved to 
give U213(x) and, hence, L,(U213). Equations (13) and (14~) now give R’(x) which is 
used in (15) to give U’(x). The cycle is now complete and can be repeated to advance 
U to new time levels. When solving these sequences of ODES L,(V) is given in 
terms of U” and R” (functions of U ‘, k < m) and is exact except for temporal 
discretization error. 

4.1.1 Spatial Approximations 

Finite-difference Approximations. When we replace L,(V) by finite-difference 
formulae (central differencing, say) we obtain a system of algebraic equations. If the 
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system is linear, we can solve it by efficient matrix inversion routines. If the system is 
nonlinear we can use an iterative method which generally depends on the temporal 
and spatial grid increments for its convergence. A condition similar to the CFL 
condition for explicit methods is often required [ 171. 

When we use high-order finite-difference formulae the system of algebraic 
equations becomes more complicated. Even in the linear case, the method of solution 
can be complicated. Moreover, high-order accurate-difference methods generally 
require one or more extraneous-boundary conditions, the effects of which on the 
accuracy and stability of the interior solution must be carefully considered in the 
numerical calculations. 

ODE Integration Methods. A powerful way to overcome the difficulties 
associated with the finite-difference spatial approximations is to solve (15) directly 
using an ODE integration routine. We divide the solution domain along the x axis 
into a number of basic grid points where U and L,(U) are defined. Given the starting 
value u,(t) at x = 0, say, the routine integrates (15) into x > 0. Intermediate values 
which are not on the basic grid points and which are required by the routine for 
automatic mesh refinement, accuracy, and stability controls, are obtained by inter- 
polations. We believe that this approach has several advantages over the finite- 
difference method: (1) High-order accurate solutions free of extraneous boundary 
conditions are obtained; (2) The number of ODES involved per (fractional) time step 
in our method is equal to the number of dependent variables in the problem being 
considered and. this number is usually small (e.g., density and one velocity in one- 
dimensional motion of a polytropic gas). In contrast, the number of (nonlinear) 
algebraic equations involved in a finite-difference method is the number of grid points 
used and thus can be very large; (3) Unconditionally stable and accurate ODE 
solvers (e.g., Bui [ 131) are available and they do not involve any iteration. Such 
methods are not yet fully developed for a system of nonlinear algebraic equations. 

Integration by Chebyshev’s Series. Norton [ 181 (see also Clenshaw and Norton 
[ 191) used Newton’s iteration to solve ODE of the form du/dx = g(x, u). He 
expanded u(x), du/dx, and the guessed functions g(x, u) and ag/au into Chebyshev’s 
series. The coefficients in these expansions are related by simple recursive formulae 
which in turn yield a system of linear algebraic equations for the new Chebyshev’s 
coefficients of u(x). The iteration is continued until some pre-assigned convergence 
criterion is satisfied. 

The method is similar to spectral/Galerkin method (Orszag and Israeli [20]) and 
good accuracy can be expected. A variety of boundary conditions can be handled 
with this method and no extraneous boundary conditions are required. 

Other Methods. Many other ODE integration methods could be considered. 
Some examples are polynomial approximation methods [ 2 11, collocation methods 
1221, and contraction-mapping methods [23]. Needless to say, the choice is numerous 
and we cannot explore all the possibilities in this work. 
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4.1.2 Test Examples 

We use our methods to solve numerically one-space dimensional-hyperbolic PDEs. 
We use Methods 3 and 4 as the temporal integrators. For the spatial integrators, we 
use ODE integration routines of Gear [24] and Shampine and Gordon 1251, the 
Chebyshev’s series for ODE integrations of Clenshaw and Norton [ 191 and Norton 
[IS], and, in one example, our own Method 3.1. We take the test examples from 
Wang et al., [26], Orszag and Israeli [20], Gary [27], and Heydweiller and Sincovec 
[28] and compare our results with theirs whenever possible. 

TEST EXAMPLE 1 (Gary [27]). The hyperbolic equation 

u, + 24, = 0, o<x, t<2lz (164 

with initial condition 

u(x, t = 0) = exp(0.5 sin(x)) (16b) 

and boundary condition 

u(x = 0, t) = exp(-0.5 sin(t)) (16~) 

has an exact solution 

u(x, t) = exp(0.5 sin(x - t)). (164 

TABLE VIII 

Comparison of PDE Solvers for PDE Test Example 1 
with Smooth Solution 

Maximum relative error 

Time 

Integrators 

Space N At/2n. 

time/2n 

0.2 1.0 

Method 3.1 
Method 4.1 
Method 4.1 

MOL, leapfrog [27] 

MOL, Adam Predictor 
with 4th-order 
Milne corrector 

Chebyshev ODE Solver 10 0.1 2.0(-3) 5.6(-3) 
Chebyshev ODE Solver 20 0.05 4.0(-S) 1.2(-4) 
Shampine & Gordon’s 11 0.1 2.4(-3) 3.8(-3) 

ODE routine [25] with 
Chebyshev’s interpolation 

4th-order differencing 21 20.05 - 2.1(-3) 
with periodic 
boundary conditions 

4th-order differencing 21 zo.05 - 2.4(-3) 
with periodic 

boundary conditions 
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Gary [27] used periodic boundary condition u(x = 0, t) = u(x = 2n, t) instead of 
(16~) to solve (16a, b). He used the method of lines for the temporal integration and 
five-point fourth-order finite differencing for the spatial approximation of a,. Our 
results are compared with Gary’s best results in Table VIII. The “N” in this table 
(and in subsequent tables) has different meanings for different spatial integrators. For 
the Chebyshev’s series ODE method, N is the number of terms in the Chebyshev’s 
series representation of the solution U. For the ODE integration routines of Gear or 
Shampine and Gordon, N is the basic grid points on which U and dU/dx are defined. 
For finite-difference methods, N is the number of grid points used (i.e., dx = 
27r/(N - 1) for the present example). Collectively, we will call N “the number of 
points.” Table VIII shows that Method 4.1 requires roughly half the number of 
points for the same accuracy obtained by Gary. The accuracy is significantly 
improved when Method 4.1 is used with Chebyshev’s series ODE solver. Note also 
that for the present linear problem the leapfrog scheme exhibits some cancellation 
between temporal- and spatial-truncation errors and is very accurate [27, p. 1421. 

TEST EXAMPLE 2 (Orszag and Israeli 1201). The PDE is 

Ut + u, = 0, -l<x<l 

with 

?.4(x,t=O)=O 

and 

u(x = -1, t) = sin(47rt). 

The exact solution is 

u(x, t) = 0 for t<x+ 1, 

= sin(4Z(t -x - 1)) for t>x+ 1. 

Orszag and Israeli used Adams-Bashforth method for the temporal integration and 
second-order, five-point fourth-order, compact three-point fourth-order and spectral 
(Chebyshev’s series) methods for the spatial integrations. Special outflow boundary 
conditions at x = 1 are applied [20, pp. 285-2861. They used very small At so that 
temporal discretization error is negligible in their calculations. 

In Table IX we compare the root-mean-square (~5,) errors at t z 5 for Method 3.1, 
Chebyshev’s series ODE solver and for five-point fourth-order differencing and 
spectral method of Orszag and Israeli. No special outflow conditions are needed in 
our method. Our calculation with smallest At agrees well with the results of the 
spectral method. Both are much more accurate than the finite-difference method. This 
is not surprising since the Chebyshev’s series ODE solver we use is similar to the 
spectral method. 
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TABLE IX 

Comparison of PDE Solvers for PDE Test Example 2 with NonSmooth Solution 

Integrators 

Time Space N At 

Method 3.1 Chebyshev ODE Solver 20 0.0125 
Method 3.1 Chebyshev ODE Solver 20 0.025 
Method 3.1 Chebyshev ODE Solver 20 0.05 
Adams-Bashforth [ 201 4th-order differencing 41 <l 

with 4th-order one-sided 
differences at outflow 

Adams-Bashforth [ 201 Chebyshev’s Polynomial 20 <I 
(Spectral method) 

L, Error at 
t-5 

1.6(-3) 
5.0(-3) 
3X(-2) 
7.0(-2) 

l.O(-3) 

TEST EXAMPLES 3 (Heydweiller and Sincovec [28]). The PDE 

Ut = -(u2/2), 3 O<x<l 

with 

and 

has an exact solution 

24(x, t = 0) =x (17b) 

u(x = 0, t) = 0, 

24(x, t) = x/( 1 + t). 

TABLE X 

Comparison of PDE Solvers for PDE Test Example 3 

(W 

(17c) 

(174 

Maximum error 

Time 

Integrators time 
- 

Space N At 1.0 0.5 10.0 

Method 3.1 Method 3.1 with 21 0.1 0.40(-5) 0.76(-6) 0.32(-6) 
linear interpolation 

MOL, Non-stiff Second-order central 101 ~0.01 0.18(-4) 0.16(-4) 0.20(-4) 
Gear’s method [28] differencing with 

second-order one-sided 
differencing at outflow 
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Heydweiller and Sincovec solved this equation using the method of lines with 
Gear’s non-stiff method as the temporal integrator and second-order central 
differencing for spatial approximation of (u*/2),. We integrated (17) using 
Method 3.1 for both the temporal and spatial integrations. Table X shows that our 
solution is the more accurate. Heydweiller and Sincovec point out that the maximum 
error in their calculation is due to the truncation error produced by the one-sided 
differencing used at the outflow x = 1. Such a problem does not exist with our 
method. 

TEST EXAMPLE 4 (Gary 1271). The PDE 

24, = -(u*/2), + 0.5 cos(x - t) expl0.5 sin(x - t)] 

X (exp[OS sin(x - t)] - l), o,<x, t<2n 

with initial and boundary conditions given by (16b, c) has an exact solution given by 
(16d). 

In Table XI we compare our results with Gary’s best results obtained by using the 
method of lines with fourth-order Runge-Kutta method for the temporal integrator 
and a five-point fourth-order finite-difference scheme to approximate (24’/2),. As in 
test example 1, we require for our methods roughly half the number of points to 
achieve the accuracy obtained by Gary. Again, no extraneous boundary conditions 
are required in our methods. 

EXAMPLE 5 (Wang et aE., 1261). The linear shallow water wave equations 

u, + gE, = 0, E, + Hu, = 0, P>O, O<s<L (184 

TABLE XI 

Comparison of PDE Solvers for PDE Test Example 4 

Maximum relative error 

Time 

Integrators 

Space N At/2n 

time/27r 

0.2 1.0 

Method 3.1 Chebyshev ODE Solver 10 0.1 2.6(-3) 5.5(-3) 
10 0.05 2.4(-3) 2.8(-3) 

Method 4.1 10 0.1 2.3(-3) 4.3(-3) 
20 0.1 9.7(-4) 1.9(-3) 

Method 4.1 Shampine & Gordon’s ODE 11 0.1 4.5(-3) 6.5(-3) 
routine [ 25 ] with 
Chebyshev’s interpolation 

MOL, 4th.order 4th-Order differencing with 21 20.05 - 3.5(-3) 
Runge-Kutta 1271 periodic boundary condition 10 ~0.1 - 6.9(-2) 

581/45/3-l I 
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where u is the velocity in the s direction, p is the time, E is the water surface 
elevation above mean depth H (9.184 km), g is the gravitational constant 
(9.81 x 10e3 km/s’), and L is the field length (10,500 km), are nondimensionalized 
according to 

x=2s/L-1, v=E/H+u/c,, w=E/H-u/c,, 

c, = ( gH)“2, t = pc$L 

and thus transformed into the characteristic forms 

vt + 2v, = 0, w, - 2w, = 0, -l<x<l. (19) 

With initial conditions 

u(s, p = 0) = u0 sin(2rrS/L), E(s, p = 0) = H, (18b) 

where u0 = 54.6 m/s, and periodic boundary conditions, the exact solutions of (18a) 
are 

and 

E(s, p)/H = 1 - (uO/cg) cos(27cs/L) sin(2nc,p/L) 

u(s, p)/u, = sin(2rrS/L) cos(2rrc,p/L). 

(18~) 

Instead of solving (18) we solve (19) with exact boundary conditions at x = -1 for 
u and at x = 1 for w (see, e.g., John [29]). 

Wang et al., solved (18) using trapezoidal rule for the temporal integrations and 

TABLE XII 

Comparison of PDE Solvers for the 
Shallow Water Wave Equation (18) 

Maximum relative error E/H 

Integrators time 

Time Space N At 0.5 3.0 6.0 

Method 4.2 

Method 4.2 

Trapezoidal 
rule 1261 

Trapezoidal 
rule [26] 

Gear’s ODE solver with 
Chebyshev’s interpolation 

Chebyshev ODE solver 

4th-order finite difference 

Galerkin approximation with 
Hermite cubic functions as 
basic functions 

11 0.2 4.6(-4) 1.6(-3) 8.0(-3) 

10 0.2 6.5(-4) 1.7(-3) 1.7(-3) 
10 0.1 5.0(-S) 9.0(-5) 9.0(-5) 
15 0.004 6.1(-4) 3.6(-3) 7.3(-3) 

12 0.017 5.5(-4) 3.1(-3) 6.2(-3) 
18 0.002 8.1(-S) 6.9(-S) 9.4(-5) 
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five-point fourth-order finite differencing and Galerkin method for the spatial approx- 
imations. Their results are compared with ours in Table XII. For roughly the same 
number of points N, our results give roughly the same accuracy as those obtained by 
Wang et al., at much more refined At. We think that the improvement is largely due 
to the higher order accuracy of our temporal integrator. 

4.2 Extension to Two-Space Dimensional PDEs 

Our objective is to construct two-space dimensional PDE solvers which are high- 
order accurate, implicit, A-stable, and which can be solved in sequence. The problem 
is how to express the spatial derivatives of the function at time level n in terms of 
values of the functions at time levels m < n, so that when the spatial differential 
equations are solved exactly, only temporal discretization error remains. In the one- 
space dimensional case, only one spatial derivative needs to be considered and the 
problem is easily resolved. Now we have two spatial derivatives in two different 
directions and the situation is more complicated, expecially when we consider high- 
order temporal integrators. Peaceman and Rachford [8] resolved the problem for a 
second-order accurate A-stable temporal integrator. 

Alternating-Direction Implicit Method (Peaceman and Rachford). Consider 

u, = L,(u) + L*(u) (20) 

with suitable initial and boundary conditions. The AD1 method for (20) is 

and 

U”+“* = U” + (At/2)[L,(U”+“*) + L,(U”)] WI 

U n-t1 _ - U*+“* + (At/2)[LI(U”+“*) +L#Y+‘)]. @lb) 

Peaceman and Rachford arrived at (21) by reasonings derived from a first-order 
backward-implicit method. We arrive at the same Eq. (21) by the following 
reasonings. 

We approximate (20) by a two-step splitting scheme. For each step we apply the 
trapezoidal rule (Method 1): 

U”+“* = U” + (At/4)([L,(U”+“*) +L,(U”+“*)] 

+ [L,W”) + J52Wl) Pa) 

and 
u n+1_ _ un+1/2 + (At/4)([L,(U”+“*) + L,(U”+“*)] 

+ [L,(u”+‘) + L*(v+‘)]). (22b) 

We call the terms in the brackets the total operation. It is the sum of two different 
partial operations. We now replace the first total operation term in (22a) by 
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Ll(U”+“2 ) +L,(u”+“2) = 2L’(U”+“2 ), the second total operation term in (22a) by 
2L,(U”), the first total operation term in (22b) by 2L,(U”+1’2) and the second total 
operation term in (22b) by 2L2(U”+‘). The result is (21), as required. We now apply 
these ideas to extend Method 3 to two-space dimensional PDEs. 

Third Order AD1 Method. We apply Method 3 to each splitting step approx- 
imation of (20). In the sequence the arrow “a” means a reduction process involving 
the replacement of total operations by sums of equal partial operations. 

Step 1. (From time level n to time level n + l/2) 

Un+“6 = U” + (dc/6)(a’[L’(U”) +L2(U”)] + u~[L,(U”+“~) +L2(Un+“6)]) 

* U” + (dc/6)(2a’L,(U”) + 2a2L2(U”+1’6)), 

Un+1’3 = U” + (LQ/3)(b’[L,(U”) +L,(V)] 

+ b2[L1(U”+1’6) +Lp+‘q + b3[Ll(U”+q + L2(un+“3)]) 

* U” + (dt/3)(2b’L’(U”) + 2b2L2(U”+1’6) + 2b3L’(U”+“3)), 

Un+1’2 = U” + (Llt/2)(c,[L,(U”) fL2(UU)] + c2[Ll(u”+“6) +L2(Un+“6)] 

+ c3[L1(u”+“3) +L2(Un+1’3)] + C,[Ll(U”+“2) + L,(u”+‘q]) 

=+- U” + (Lo/2)(2c,L,(U”) + 2C,L,(U”f”6) 

+ 2c3L1(Un+“3) + 2c4L2(Un+“2)). 

Similarly, 

Step 2. (From time level II + f to time level n + 1) 

Un+2’3 = U”+“* + (&/~)(~u,L,(U”+~‘~) + ~u,L,(U”+“~)) 

u n+5/6 _ _ untl12 + (~lt/3)(2b,L~(U”+“~) 

+ 2b,L,(U”+2’3) + 2b3L2(u”+5’6)) 

u n+1- _ (Jnt’/2 + (Llt/2)(2c,L2(u”+“~) + 2c,L,(u”+2’3) 

+ 2c3L2(u”+5/6 ) + 2c&,(u”+‘)). 

Pa) 

WI 

(23c) 

(244 

Wb) 

(24~) 

Each sequence in (23) and (24) is an ODE and the solution at time level 12 + 1 is 
obtained by solving these ODES in sequence. Note that all the required derivatives at 
time level k can be expressed in terms of the values of the functions U at time levels 
m < k. We now search for the free parameters a,, a,, b, ,... so that the scheme is A- 
stable and third-order accurate. Infinitely many combinations of a,, a,, 6, ,... give 
third-order A-stable methods. For example, 

a, = u2 = 0.5, 

b’ = -0.25, 6, = 0, b, = 1.25, 

cl = 0.625, c2 = 0, c3 = -0.375, c, = 0.75 
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is such a combination. We have not examined all these combinations in detail. For 
example, we have not picked one such combination that gives minimum fourth-order 
terms, or even one which gives an A-stable fourth-order method. We defer these and 
their applications to future work. 

Generalised AD1 Methods. The above derivation of high-order AD1 methods 
suggests that we can formally construct, in an analogous way to (5), the generalised 
AD1 methods in two-space dimensions. 

Consider (20) with u replaced by u, where u is a vector function and define 

8, = 0, if k+j=odd 

= 1, if k+ j=even. 

The following is then the required AD1 method: 

i-l 
un+ill= _ n+j” + At ,f ‘+ bkijLk(Un+j”) ekj, 

k=l ,eo 

i = 1, 2,..., I, Z is even. (25) 

For Z = 2 we obtain from (25) the more general form of (21) and for Z = 6 we 
obtain the more general form of (23) and (24). Clearly, very high-order accurate 
formulae can be derived from (25). 

5. DISCUSSION 

5.1 Discussions on the Methods 

The solutions for the PDE examples that we used to illustrate our methods and to 
compare with others’ published results vary at comparable rates in both temporal and 
spatial directions. Also, the PDEs are non stiff and there is no advantage gained by 
using an A-stable implicit scheme if good accuracies are required. Our results are 
shown, therefore, for At/Ax < 2. For larger At/Ax the methods give stable but inac- 
curate solutions. Future work should be directed to apply the methods to stiff PDEs. 
In another extreme, when At/Ax 4 1 the sequence of ODES (15) become stiff because 
cm is generally of the form “constant/At” (see Eq. (13) and example 3 in Table 11). 
Thus, for At/Ax > 1 the integration of (15) poses less difficulty than when At/Ax < 1. 
This situation is in contrast with that which occurs when solving PDEs with conven- 
tional finite-difference methods, for which At/Ax < 1 is usually required. 

For long-period calculations and/or for calculations requiring small errors, higher 
order accurate methods should be more efficient than the trapezoidal rule. For 
example, in rows three and five of Table XII, let us assume that Method 4 requires 
five times more work than the trapezoidal rule and that the accuracy and 
computational work of the Galerkin approximation are comparable with those of the 
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Chebyshev’s ODE solver, then these two calculations require roughly equal 
computational work (dt used by Wang ef al., is approximately one-fifth of the At we 
used) and we see that the fourth-order accurate Method 4 gives much more accurate 
results than the second-order accurate trapezoidal rule. 

Methods 3.1 and 4, which we used in PDE test calculations, are not A-stable. In 
fact, Method 3.1 is unstable on the imaginary axis of the stability diagram (see 
Fig. 1). In all the calculations we presented using these methods, we detected no sign 
of instability. This is fortuitous, however, and is due to the particular initial 
conditions we used. For more general initial conditions and/or solutions, A-stable 
integrators like Method 3.2 should be used. 

5.2 Questions That Remain 

When we solve nonlinear PDEs with our method we obtain sequences of nonlinear 
ODES. In principle, nonlinear ODES are handled as easily as linear ODES by the 
general purpose ODE integration routines. In practice, some problems can arise, 
however. For example, suppose we want to solve U, + (u*/2), = cos(x - t) 
(sin(x-t)- l), O<x<2, @=0,x)= ’ ( ) sin x , using any of the temporal integrators 
we developed. We obtain a sequence of ODES each of the form u du/dx = 
-CU + R(x, r; At), where R is a function of the indicated arguments and c is a 
constant (see Eq. (15)). S ince the exact solution u = sin(x - t) is well-behaved we 
expect that the approximate solution is well-behaved too, except, perhaps, at x = x,, 
where U = 0, where x, is the root(s) of R(x, t; At) = 0. Then, du/uIx = O/O and is 
indeterminate. Shampine and Gordon [25, p. 291-2931 suggest that we expand U 
about x, as in U = k,(x - xs) + k,(x -x,)’ + e-e and obtain k, = lim,,,$ du/aIx by 
L’Hospital’s rule. This resolves the difficulty but at the same time increases the 
complexity of the method. A less precise way of resolving the difficulty would be to 
interpolate dU/dx at x,. This problem needs further studies. 

When we used Gear’s or Shampine and Gordon’s ODE routines as spatial 
integrators we used Chebyshev’s interpolation for values of the functions not defined 
on the basic grid points. Chebyshev’s formula is used to ensure high accuracy. In 
some of our calculations, we tried linear interpolation with the expected drop in 
accuracy. Thus, our computed result depends for its accuracy on the details of the 
interpolation formulae used. This problem needs further studies. 

In this paper, we have concentrated on first-order spatial operators. Our methods 
are applicable to higher order and/or mixed-order spatial operators also. For 
example, L, in (15) can be -d’U/dx’ + U dU/dx in which case we obtain a 
boundary value ODE problem. Solution techniques for boundary value ODE 
problems are also well developed (see, e.g., Keller [30]). We hope to study this 
extension of our method in the future. 

Our definition of order of accuracy is restricted to linear systems only. Although 
we obtained good accuracies for some nonlinear problems (Tables IV, VI, and VII) 
this is not true in general. Future work should be directed to derive methods using the 
general definition of order of accuracy (see, e.g., Lambert [ 12, p. 1151). 



IMPLICIT SCHEMES 467 

6. CONCLUSION 

We propose in this paper implicit PDE integration methods in which the PDE is 
reduced to a sequence of ODES. We can then use accurate ODE integration 
techniques to obtain the solutions. Since the methods are high-order accurate and 
have large stability regions, they should be useful for solving problems with solutions 
which have vastly different temporal and/or spatial scales, in which the accuracy of 
the slowly varying solution is important. The results of calculations on a limited test 
examples are encouraging. Many questions remain and further works are needed. 
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